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Using the Testlet Model to Mitigate Test Speededness Effects 
 
This paper studies the effectiveness of a three-parameter testlet mixed model (3PLt*) in 

accounting for local item dependence (LID) caused by test speededness.  Data with varying 

amounts of speededness were simulated.  Recovery of item and ability parameters was examined 

for the 3PLt*, a three-parameter mixture model for test speededness (M3PLM), and the three-

parameter logistic model (3PLM).  Results indicated that while the M3PLM recovered 

parameters slightly better than the 3PLt*, the 3PLt* presents a viable alternative.  This is 

particularly true for trait estimation, because the legality of estimating ability for a subset of 

examinees using a different (less stringent) set of item difficulty estimates, as is done with the 

M3PLM, is questionable.  In contrast, the 3PLM produced heavily biased estimates of ability, 

item difficulty and item discrimination for heavily speeded examinees, and failed to account for 

LID among end-of-test items. 
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Using the Testlet Model to Mitigate Test Speededness Effects 
 
 Tests consisting of items that violate the item response theory assumption of local item 

independence (LID) can cause serious problems for test developers.  The inclusion of items with 

LID may result in spurious estimates of test reliability, item and test information, standard errors, 

item parameters, and equating coefficients (Lee, Kolen, Frisbie, & Ankenmann, 2001; Sireci, 

Thissen, & Wainer, 1991; Thissen, Steinberg, & Mooney, 1989; Wainer & Thissen, 1996;  Yen, 

1993).  Depending on the nature of the cause of LID, examinees may suffer as well.   

 LID is commonly caused by having multiple items relate to a common stimulus, such as a 

reading passage (Thissen et al., 1989; Yen, 1993).  One model which has proven very effective 

for accounting for this type of LID is the three-parameter testlet model (3PLt; Du, 1998; 

Bradlow, Wainer, & Wang, 1999; Wainer, Bradlow, & Du, 2000).  The 3PLt explicitly models 

the systematic nuisance variation that commonly exists among items within a testlet by including 

into the model a random effects, testlet- and examinee-specific ( parameter which is subtracted 

from the three-parameter logistic model (3PLM) item difficulty for examinee j.  Du (1998), 

Wainer et al. (2000) and Li & Cohen (2003) found the 3PLt to work better than other available 

models for accounting for LID caused by testlets. 

 Another common cause of LID is test speededness (Yen, 1993).  Speededness refers to 

testing situations in which some examinees do not have ample time to answer all questions.  As a 

result, examinees may either hurry through, fail to complete, or randomly guess on items, usually 

at the end of the test.  Unlike LID caused by testlets, speededness is usually an inadvertent 

source of LID in that the speed with which one responds is not an important part of the construct 

of interest.  Examinees affected by test speededness typically show positive LID on items at the 

end of the test and receive ability estimates that underestimate their true levels.  In addition, 
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speededness may cause certain items, particularly those administered late in the test, to have 

poorly estimated parameters (Douglas, Kim, Habing, & Gao, 1998; Oshima, 1994) making it 

difficult to hold together a score scale over time (Wollack, Cohen, & Wells, 2003). 

 In the past several years, a few models that explicitly model test speededness have been 

developed to improve the estimation of parameters for items at the end of the test.  Bolt, Cohen, 

and Wollack (2002) developed a 2-class mixture item response model, with end-of-test items 

constrained to be harder in one class than in the other, to estimate item parameters separately for 

latent speeded and nonspeeded classes of examinees.  Yamamoto & Everson (1997) developed a 

hybrid model which assumes that an item response model is appropriate throughout most of the 

test, but that items at the end of the test are answered randomly by some subset of examinees. 

Both the mixture and hybrid models have been shown to help improve the quality of item 

parameter estimates (Bolt, Mroch, & Kim, 2003), but the models suffer some drawbacks.  For 

example, both models classify examinees into speeded or nonspeeded groups, and estimate 

nonspeeded parameters using only a subset of the data.  Also, by assuming that speededness only 

manifests itself in random guessing, the hybrid model is likely unrealistic.  The mixture model 

approach, on the other hand, is sensitive to examinees whose performance on end-of-test items is 

appreciably worse than on the rest of the test; therefore, it requires examinees to have achieved a 

certain level of performance prior to becoming speeded.  Consequently, the mixture model is 

biased against identifying low-ability speeded examinees.  The mixture model approach is also 

extremely time-consuming.  More importantly, however, is that testing companies in the United 

States may not be allowed to use the mixture model for purposes of reporting scores to 

examinees.  Under Title I of the Civil Rights Act of 1991 (1991), it is illegal to use different cut-

scores for different manifest groups of test takers.  Though the mixture model has not been 
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subjected to litigation, it is unclear whether it would be deemed permissible to score exams using 

different item parameters (for the same items) for latent groups of examinees. 

 Therefore, it would be desirable to have a model that accounts for speededness and can 

overcome some of the limitations with current models.  In spite of the success the 3PLt has had 

in accounting for other types of LID, the model has not previously been studied in the 

speededness context.  In this study, we consider a 3PLt mixed model (3PLt*), where the items 

early in the test are assumed to be locally independent and are modeled by the 3PLM, but items 

at the end of the test are assumed to be speeded and are modeled by the 3PLt.  The purpose of 

this study was to examine the utility of the 3PLt*, under simulated conditions of test 

speededness, via comparison with both the traditional 3PLM and a mixture three-parameter 

logistic model (M3PLM) for test speededness (Bolt et al., 2002, 2003).  

Research Design 

Data Simulation 

 Item responses were generated using a model for speeded test data that allows for speeded 

examinees’ performances to decay at different rates and times (Goegebeur, DeBoeck, Wollack, 

& Cohen, conditional acceptance; Wollack & Cohen, 2004).  This model is given by: 

   *( ) (1 ) ( ) min 1, 1
λ

θ θ η
    = + − − −       

j

i j i i i j j
iP c c P
n

 ; (1) 

where Pi(2j) is the standard two-parameter logistic model, (
1( )

1 i j ii j a bP
e θθ − −=

+ ) , such that ai and 

bi are the item discrimination and difficulty, respectively, for item i (i = 1, . . . , n), ci is the 

pseudo-guessing parameter for item i, 2j is the trait level of examinee j (j = 1, . . . , N), 0j (0 # 0j 

# 1) and 8j (8j $ 0) are the speededness point and rate parameters for examinee j, and min [x, y] 

is the smaller of the two values x and y.  In the above model, 0j models the point in the test, 
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expressed as the percentage of the items that have been completed, at which examinee j first 

experiences speededness.  The 8j parameter controls the rate at which examinee j’s performance 

deteriorates.  The model in Equation (1) is appealing because when 8j = 0 and/or 0j = 1, 

examinee responses are modeled by the 3PLM.  However, as 8j increases and/or 0j decreases 

(indicating that the examinee is greatly influenced by speededness), the probability of answering 

correctly begins to shrink, eventually approaching ci, asymptotically. 

 Examinee parameters from a 3PLM were generated randomly from various distributions.  

Examinee 2j parameters were sampled randomly from a N (0, 1) distribution, for all examinees.  

However, 8j and 0j parameters were sampled differently for speeded and nonspeeded examinees.  

For nonspeeded examinees, 8j and 0j were fixed at 0 and 1, respectively, so responses were 

generated from the 3PLM.  For speeded examinees, however, coefficient *
jλ  was sampled 

randomly from a N (3.5, 1), and 8j was computed as 8j = exp( *
jλ ).  0j parameters were generated 

from two different distributions, either a Beta (18, 2) or a Beta (16, 4), simulating tests with 

different amounts of speededness.  In the former case, speeded examinees, on average, became 

speeded after having completed 90% of the test items (i.e., on average, they were speeded for the 

last 6 items).  In the latter case, the average speeded examinee began to experience speededness 

effects after 80% of the test was complete (i.e., on the final 12 items).   

 3PLM item parameters for a 60-item test were fixed, so that ai = 1, bi = 0, and ci = 0.2 for all 

items.   Although item parameters in simulation studies are typically randomly sampled from 

representative distributions, the current simulation design was selected to ensure that end-of-test 

items were no more difficult than other items, at least for the nonspeeded group.  Having difficult 

items at the end of the test can mask speededness effects by making it difficult to discern 
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whether examinees are attempting and missing those questions or whether their performance has 

deteriorated due to speededness.  By constraining the item parameters to be equal for all items, 

any changes in examinee behavior may be attributed solely to speededness effects. 

 Item responses for 1,500 nonspeeded examinees and 500 speeded examinees were generated 

from Equation (1) using the above-specified parameters.  For convenience, examinees 1 – 1,500 

were simulated to be nonspeeded and examinees 1,501 – 2,000 were simulated as speeded.  Five 

different datasets were generated for both speededness conditions.  All person parameters (i.e., 

2j, 8j, and 0j) were resampled from their respective distributions for each replication. 

Estimation Models   

 Each dataset was analyzed by three separate models:  3PLt*, 3PLM, and M3PLM.  In 

estimating the parameters of the 3PLt* and M3PLM, it is necessary to specify how end-of-test 

items will be modeled.  For the 3PLt*, the potentially speeded end-of-test items were chunked 

into one or more testlets, while the remaining items (at the beginning and middle of the test) 

were assumed to satisfy the LID assumption, hence were modeled by the 3PLM.  Under the 

M3PLM, end-of-test items were modeled to have two distinct sets of bi values such that bi,1 ≥ bi,2 

for all i ≥ n′, where n′ is the first end-of-test item.  For all i < n′, bi values were constrained so 

that bi,1 = bi,2.  Equality constraints were placed on ai and ci for all items. Estimation of all 

models was done in WinBugs (Spiegelhalter, Thomas, & Best, 2000), using a Markov chain 

Monte Carlo algorithm (MCMC; Gilks, Richardson, & Spiegelhalter, 1996; Patz & Junker, 

1999a, 1999b).  Appropriate burn-ins for the different models were determined from pilot runs.  

In the case of the 3PLt* and 3PL models, the initial 1,000 iterations were discarded.  For the 

M3PLMs, the initial 4,000 iterations were discarded.  For all models, a minimum of 5,000 

iterations were sampled after burn-in.  The average sampled value across all iterations after burn-
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in was taken as the parameter estimate. 

 Given that the only source of LID simulated was test speededness, it was expected that γ jk  

values would be negligible for nonspeeded examinees but substantial for speeded examinees.  

However, under the 3PLt*, γ jk  parameters are estimated subject to the constraint ˆ 0γ =∑ jk
j

, for 

each of the k testlets.  As a result of centering the γ̂ jk  across both speeded and nonspeeded 

examinees, the γ̂ jk  values for nonspeeded examinees were largely negative, whereas they tended 

to be positive for the speeded examinees.  Therefore, the item difficulty estimates were shifted 

away from where they would have been had the model parameters been estimated using only 

nonspeeded examinees.  To compensate for this bias, item difficulties for end-of-test items were 

adjusted by a constant that reflects the mean γ̂ jk  for nonspeeded examinees.  This process is 

described below. 

 If q and q′ denote the nonspeeded and speeded examinees, respectively, the appropriate 

correction factor to be added to each of the bi is equal to γ qk , the average γ jk  across all 

nonspeeded examinees.  However, in practice, neither the γ jk  nor the exact subset comprising q 

is known; therefore the value γ qk  must be estimated.  Because speededness is assumed to be the 

only source of LID, it is expected that , ,γ γ ′<q k q k  for all (q, q′) pairs.   Therefore, under the 

assumption that the γ jk  ~ N(0, 2
γσ k

), an approximation for γ qk  is given by 
1

ˆ ˆγγ σ
− ′+

 
=  

 k q
q q

T
qk ZE , 

where q / (q + q′) is the proportion of examinees who are nonspeeded, 2ˆγσ k
 is the teslet variance 

estimated within the MCMC algorithm, and ( )
′+− q

q q

T
1

ZE  is the mean of the standard normal 

distribution truncated on the left at α = 1- q / (q + q).  Here, because it was known that three-

quarters of the sample was nonspeeded examinees, ( )
′q q

( )= =0.251
0.4242

+−
−q

T TZ ZE E  was used for 

all testlets and datasets. 

 In addition, in order to estimate the ( parameters in the 3PLt*, it is necessary to specify the 

size of the testlets.  In situations where LID is caused by dependency on a common stimulus, 
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specification of the testlet size is easy, as all items associated with that stimulus are analyzed as a 

testlet.  In the context of speededness, specification of testlet size is more difficult for two 

reasons.  First, the stimulus common to all affected items does not have a clear, discernable 

beginning.  Some examinees will be speeded, others will not be.  Further, the speeded examinees 

do not all become speeded at the same point.  Therefore, it is unclear how many items should 

comprise the testlet(s) at the end of the test.  The second problem is that, even if it were 

knowable which items were affected by speededness, the effect of LID may not be constant 

across all speeded items.  Instead, speededness may become more pronounced, resulting in a 

higher dependence among the items at the very end of the test than other speeded items 

somewhat earlier in the test.  Yet, within a testlet, the 3PLt γ parameter exerts a constant effect 

on item difficulty estimates. 

 The first problem above—how to identify the end-of-test items—also exists for the 

M3PLM, in that the model requires specification of the items that are constrained to be harder 

for the speeded class.  Traditionally, the constraints have been placed on the last 6-10 items, 

items that are believed to contain the most speededness.  Conventional wisdom is that sorting 

examinees into classes accurately requires only that the most heavily speeded items be 

considered.  However, if the set of end-of-test items is too small, classifications based on those 

items may be unreliable.  If the set is too large, ordinal constraints will be imposed on items 

which do not behave differently for the two groups, resulting in difficulty sampling acceptable 

values for the MCMC estimation.  The issue of how to select end-of-test items for speededness 

analyses has not been studied empirically. 

 To explore these issues further, parameters for the 3PLt* and M3PLM were estimated 

according to different specifications.  For each dataset, 3PLt* parameters were estimated six 
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times, manipulating both the number of items assumed to be speeded (i.e., end-of-test items) and 

the number of testlets.  The estimation specifications for the end-of-test items with the 3PLt* are 

shown in Table 1.  All remaining (non end-of-test) items were estimated with the 3PLM.  For the 

M3PLM, each dataset was fitted with three different mixture models, varying the number of end-

of-test items assumed to be speeded.  The M3PLM was estimated by constraining the final 4, 8, 

and 16 items to be harder for the speeded class.  Under these three models, bi values for the 

initial 56, 52, and 44 items, respectively, were constrained to be equal for the latent speeded and 

nonspeeded groups.   

______________________________ 

Insert Table 1 About Here 
______________________________ 

Evaluative Measures   

 To assess the quality of the item and ability parameter recovery, root mean square errors 

(RMSE) and biases were computed between generating parameters and their estimates for all 

models.  Prior to computing RMSEs and biases, item parameter estimates for all replications 

were equated to the metric of the generating item parameters using the test characteristic curve 

method (Stocking & Lord, 1983), as implemented in the EQUATE computer program (Baker, 

Al-Karni, & Al-Dosary, 1991).  All 60 items were included in the anchor set.  For the M3PLM, 

the equating transformation coefficients were estimated from the item parameter estimates from 

the nonspeeded class only.  It is important to note that, for the 3PLt*, the quadratic loss function 

to be minimized in characteristic curve equating would typically also include estimates of the 

means of the estimated testlet factors ( γµ , Li, Bolt, & Fu, 2005).  However, because the data 

were not simulated as 3PLt data, true γµ  values do not exist.  Therefore, the γµ  were not 

included in estimating the equating coefficients for the 3PLt*.   
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 Parameter recovery was further assessed by computing correlations between estimated and 

generating ability values.  Because item parameters were identical for all items, there was zero 

variance among the generating values, so correlations could not be computed. 

 In addition, a number of statistics were computed to determine the overall fit of the model.  

After fitting the model, Yen’s Q3 (1984) was computed to assess the amount of LID between 

pairs of items for which the model does not account.  Q3 is the average correlation between item 

residuals (i.e., observed item score minus expected item score) for pairs of items.  Because 

speededness causes LID at the end of the test, Q3 statistics were computed for the entire test, as 

well as separately for the last 4, 8, 12, and 16 items.  Further, to explore how well the 3PLt* 

accounted for end-of-test LID caused by test speededness, we looked at two variables related to 

the γjk for examinee j on testlet k.  Estimated testlet variances ( 2ˆγσ k
) were computed directly from 

the WinBugs runs for each of the 3PLt* models.  Because under the generating model, the 

amount of deterioration in performance increases as a speeded examinee progresses through the 

test, LID should increase throughout the items at the end of the test.  Consequently, it was 

expected that 2ˆγσ k
 would increase from the first to the last testlet.  In addition, because LID was 

not simulated for nonspeeded examinees, it was expected that (a) within testlet k, the average γ •k  

value would be greater among speeded examinees than nonspeeded examinees, and (b) across 

testlets, the difference in average testlet values between speeded and nonspeeded groups (i.e., 

,γ ,γµ µ−
k Speeded k Nonspeeded

) would increase from the first to the last testlet.  Therefore, 2ˆγσ k
, ,γ k Speeded , and 

,γ k Nonspeeded  values were examined to learn the extent to which their values conformed to 

expectations. 
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Results 

 Biases and RMSEs for ability parameters under all the models and both magnitudes of 

speededness are provided in Table 2, averaged across replications.  Separate biases and RMSEs 

are provided for the nonspeeded (NS) and speeded (SP) examinees and the total sample.  

Average biases and RMSEs for item parameters are provided in Table 3 (for bi values) and Table 

4 (for ai values).  RMSEs and biases were uniformly very low for pseudo-guessing parameters, 

so results are not presented here.  Statistics are presented separately for NS and SP items.  

Because the expected number of speeded items were 6 and 12 in the E(η) = 0.90 and E(η) = 0.80  

conditions, respectively, items 55-60 were considered SP and in the E(η) = 0.90 condition and 

items 49-60 were considered SP and in the E(η) = 0.80 condition, regardless of the number of 

items actually analyzed as end-of-test items under the different models. 

______________________________ 

Insert Table 2 About Here 
______________________________ 

 Regardless of the magnitude of speededness, all models showed very small overall (i.e., 

total) biases in ability estimation.  The largest absolute bias, just 0.04, was for the 3PLt*-2×4 and 

3PLt*-1×4 models in the E(η) = 0.80 condition.  Most of the models had overall biases that were 

no more than 0.02 in absolute value.  The NS ability biases for all models were positive (i.e., 

ability was over-estimated), regardless of the amount of speededness, and were quite similar, 

with the possible exception of the 3PLt*-4×4 model in the E(η) = 0.80 condition which produced 

a slightly larger bias.  In both conditions, for the SP group, biases were consistently negative for 

all models (i.e., ability was under-estimated).  In the E(η) = 0.90 condition, SP bias was largest 

for the 3PLM; SP biases for the M3PLMs and 3PLt* models were similar.  In the E(η) = 0.80 
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condition, however, SP biases were lowest for the M3PLMs and were worst for the 3PLM.  

Performance of the 3PLt* models varied depending on the number of end-of-test items that were 

modeled with testlets.  The 3PLt*-1×16, 3PLt*-2×8, and 3PLt*-4×4, each of which used testlets 

to describe the performance on the final 16 items, performed similarly and consistently produced 

SP biases most similar to that in the M3PLMs.  The two 8-item 3PLt* models (i.e., 3PLt*-1×8, 

and 3PLt*-2×4) produced the next lowest biases, followed by the 3PLt*-1×4, which was very 

similar to the 3PLM.  For both the16- and 8-item 3PLt* models, bundling end-of-test items into 

fewer testlets resulted in lower SP biases than using more testlets. 

 RMSEs for NS, SP, and overall were similar for all models in the E(η) = 0.90 condition.  

When E(η) = 0.80, the RMSE pattern seemed to coincide with the bias pattern.  RMSEs for the 

M3PLMs were slightly lower than for the 3PLt* models, and among the 3PLt* models, RMSEs 

were lowest when 16 items were modeled with testlets.  The 3PLM had the highest RMSE, but 

the 3PLt* that modeled only 4 testlet items was not much better. 

 Overall, the M3PLM seemed to recover ability parameters best.  This was most noticeable 

among the SP bias in the E(η) = 0.80 condition.  Results from the three M3PLM solutions were 

virtually indistinguishable from one another.  Results from the six 3PLt* solutions varied, but 

these models tended to outperform the 3PLM, particularly with respect to SP bias.  Among the 

3PLt* models, recovery of ability parameters appeared to suffer most when the testlets were not 

sufficiently large to include most of the speeded items.  This makes sense because items that are 

not included in testlets are modeled by the 3PLM, where performance was clearly worst. 

 Bias and RMSE results for item difficulty estimates (see Table 3) were largely similar to 

those for ability estimates.  The biases and RMSEs for the M3PLMs were small for all groups of 

items in both conditions, indicating that the M3PLMs recovered underlying difficulty parameters 

well for both speeded and nonspeeded items.  In the E(η) = 0.90 condition, the 3PLt* models 

worked very well at recovering item difficulty estimates for both speeded and nonspeeded items, 
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except for in the 3PLt*-1×16 model, where bias was fairly large.  In the E(η) = 0.80 condition, 

the 3PLt* difficulty estimates for speeded items were somewhat over-estimated, relative to their 

estimates in the M3PLMs.  This was especially true in the 3PLt*-1×4.   

 Both the M3PLMs and 3PLt* models worked significantly better than the 3PLM at 

recovering item difficulties.  Under the 3PLM, item difficulties for end-of-test items were, on 

average, estimated as .32 logits too hard in the E(η) = 0.90 condition and 0.35 logits too hard in 

the E(η) = 0.80 condition.  In addition, RMSEs for the SP items were much higher than for the 

other models.   

______________________________ 

Insert Table 3 About Here 
______________________________ 

 The data in Table 4 suggests that both the M3PLM and 3PLt* were also better at recovering 

the underlying item discrimination indices than was the 3PLM.  The difference was not as 

apparent in the E(η) = 0.90 condition, where biases for all models were fairly comparable overall.  

In fact, the 3PLt* and 3PLM actually produced slightly less biased and less variable 

discrimination estimates among end-of-test items than did the M3PLM.  However, in the E(η) = 

0.80 condition, the 3PLM over-estimated end-of-test discrimination parameters by an average of 

0.27.  In contrast, bias among the other models ranged from just -0.01 to 0.08.  RMSEs for the 

3PLM were also two-and-a-half to three times larger than for either the M3PLM or 3PLt* 

models. 

______________________________ 

Insert Table 4 About Here 
______________________________ 

 Correlations between generating and estimated θ parameters are provided in Table 5 for the 

different models.  In the E(η) = 0.90 condition, correlations for the three groups were high for all 
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models.  The correlations were slightly lower when E(η) = 0.80, particularly among the speeded 

examinees.  However all correlations studied were at least .90 and within both conditions, 

differences between the models were negligible.   

______________________________ 

Insert Table 5 About Here 
______________________________ 

 In addition to examining the quality of parameter recovery, analyses were performed to 

determine the extent to which the models accounted for LID.  Table 6 shows the average Q3 

statistics for all models under both speededness conditions for the entire test, as well as for the 

last 4, 8, 12, and 16 items.  Although Q3 should be distributed approximately N(0, 1/(N − 3)), 

Yen (1993) showed that, in practice, Q3 has a slight negative bias equal to −1/(n − 1).  Therefore, 

average Q3 values near (or just below) zero are indicative of item pairs that are free from LID.   

______________________________ 

Insert Table 6 About Here 
______________________________ 

 Over all item pairs, Q3  values were low for all models in both speededness conditions.  

However, in large part, this is because the nonspeeded items were locally independent, and the 

number of nonspeeded items outweighed the number of speeded items by an average of at least 

4:1, even in the high speededness condition.  Furthermore, the number of nonspeeded examinees 

was three times greater than the number of speeded examinees. 

 The ability of the models to remove LID due to speededness is best assessed by considering 

the average Q3 indices among pairs of items at the end of the test.  From Table 6, one can see 

that the models were not all equally effective at accounting for speededness.  The three M3PLMs 

were very effective at removing LID from the datasets.  Regardless of E(η), average Q3 indices 
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were essentially zero between pairs of end-of-test items.  Although the 3PLt* was not as 

effective as the M3PLM, Table 6 shows that it did effectively reduce the amount of LID that 

would have been present using only the 3PLM.  In the E(η) = 0.90 condition, after fitting a 

3PLt*, there was very little evidence of remaining LID, with the exception of the 3PLt*-1×16 

condition, where the average Q3 value among the final four items was 0.09.  It is quite possible 

that this effect was observed because the number of speeded items (six, on average) was 

substantially less than the number of items in the last testlet (16).  That is, the magnitude of 

dependency among the last few speeded items was largely offset (i.e., watered down) by 

including in the testlet many items for which local independence held.  Consequently, the γ̂ jk  

under-estimated γ jk , so the bi for end-of-test items were not corrected enough to remove the 

existing LID.   

 The E(η) = 0.80 condition shows one of the possible limitations of using the 3PLt* in the 

speededness context.  Provided the testlets are appropriately specified, the 3PLt* appears to work 

rather well at removing LID.  Note that the 3PLt*-1×16, 3PLt*-2×8, and 3PLt*-1×8 all do a 

fairly good job accounting for LID.  However, the other three 3PLt* models do not work as well, 

particularly in terms of LID among the last 8 or last 12 items.  Consistent with some patterns that 

were found earlier, it appears as though fewer, larger testlets is more effective than having more, 

smaller testlets.  Still, from Table 6 it is clear that the 3PLt* models, even at their worst, offer a 

substantial improvement upon the 3PLM with regards to the amount of LID among end-of-test 

items. 

 Finally, testlet variances in the 3PLt* models were examined to see if (a) the variances 

increased for testlets associated with end-of-test items, and (b) there was greater variation among 
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γ̂ jk  values for speeded examinees than for nonspeeded examinees.  Testlet variances for the 

various 3PLt* models are shown in Table 7.  As can be seen from Table 7, the 3PLt* models 

were sensitive to the type and magnitude of simulated LID, in that 2ˆγσ  values were small for 

testlets where little speededness was simulated (e.g., in items 45-52 in the E(η) = 0.90 condition 

and in items 45-48 in the E(η) = 0.80 condition), and moderate-to-large over portions of the test 

that were expected to be more heavily speeded.  Moreover, the testlet variances tended to be 

larger when E(η) = 0.80, indicating that the 3PLt* model was able to account for the stronger 

speededness effect that was simulated. 

______________________________ 

Insert Table 7 About Here 
______________________________ 

 Table 8 shows the differences between the sample variances of γ̂ jk  ( 2
γ̂ jk

s ) for nonspeeded 

and speeded examinees under the two conditions.  Differences were computed as , so 

negative values indicate greater variability in 

, ,

2 2
ˆ ˆγ γ−
k NS k SP

s s

γ̂ jk  among the speeded examinees.  Testlets 

associated with end-of-test items were expected to show LID for only the speeded group.  

Therefore, on these testlets,  should be higher than , resulting in negative values.  In 

fact, this was precisely the observed trend.  For sets of nonspeeded items (e.g., in the 3PLt*-2×8 

[testlet 1] and the 3PLt*-4×4 [testlets 1 and 2] when E(η) = 0.90, and in the 3PLt*-4×4 [testlet 1] 

whenE(η) = 0.80), no differences in 

,

2
γ̂ j SP

s
,

2
γ̂ j NS

s

2
γ̂ jk

s  values were observed.  However, in all other conditions, 

 values were larger than  values.  The magnitude of difference increased as the test 

progressed and the extent of speededness increased. 

,

2
γ̂ j SP

s
,

2
γ̂ j N

s
S
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______________________________ 

Insert Table 8 About Here 
______________________________ 

Discussion 

 This study examined the effectiveness of a 3PLt mixed model at recovering underlying 

item and ability parameters under conditions of test speededness, through comparison with one 

model that explicitly models test speededness, the M3PLM, and one model that assumes that no 

LID exists among the items, the 3PLM.  The results of the study showed that while the M3PLM 

was the most robust to speededness contaimination, the magnitudes of differences in bias and 

RMSE between the M3PLM and 3PLt* models was typically small, even under heavily speeded 

conditions.  In contrast, the 3PLM produced heavily biased estimates of ability, item difficulty 

and item discrimination for heavily speeded examinees and failed to account for LID among end-

of-test items.  Hence, it would appear as though the 3PLt* presents a viable alternative model 

when a dataset is believed to contain speededness.  This is particularly true where trait estimation 

is concerned, because the legality of estimating ability for a subset of examinees using a different 

(less stringent) set of item difficulty estimates, as is done with the M3PLM, is questionable.   

 Not surprisingly, the 3PLt* seemed to work best when the end-of-test items being modeled 

in testlets coincided reasonably well with the test items that were speeded.  When too many 

items were modeled in testlets, as was the case when E(η) = 0.90 and the last 16 items were in 

testlets, and when too few items were modeled in testlets, as was the case when E(η) = 0.80 and 

the last 4 items were in testlets, parameter recovery was adversely affected.  This is particularly 

apparent by examining the biases in item difficulty and the Q3 values for end-of-test items, but is 

present to a certain extent by examining bias in ability, as well.  It appears to be the case that, if 
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the number of speeded test items is roughly known, estimation is improved by including those 

items into a single testlet.  However, if it is unclear whether and how much speededness exists in 

the dataset, rather than use a single testlet which may over- or under-estimate the number of 

speeded items, it is preferable to use more, smaller testlets.  Concern over the number of items to 

model as speeded does not appear warranted for the M3PLM:  the bias, RMSEs, and Q3 statistics 

were all unaffected by the number of end-of-test items specified in the mixture model.   

 As is the case with all simulation studies, the results of this study, at least to a certain extent, 

reflect the manner in which the data were simulated.  Whereas the M3PLM assumes that 

examinees belong to one of two discrete classes—either speeded or nonspeeded—the 3PLt* 

assumes more of a continuum in how it accommodates speededness since the testlet random 

effect parameter is continuous.  In this study, although examinees were either simulated as 

speeded (i.e., 8j = 0 and/or 0j = 1) or nonspeeded (i.e., 8j > 0 and 0 ≤ 0j < 1), those who were 

speeded were simulated to vary in both degree and amount.  Therefore, the simulation of 

speededness was perhaps more consistent with the way it is modeled under the 3PLt* than with 

either of the other two models.  To the extent that this simulation did not reflect actual patterns of 

speededness in real data, it may not be possible to generalize these findings. 

 The testlet model has historically been used in situations where the nature of the tasks 

creates clearly defined sets of items that are somehow related, as is often the case with reading 

comprehension questions associated with a common passage.  The results of this study open the 

door to explore the use of the testlet model in other, more complicated settings for which items 

contain LID.  For example, it would be worthwhile to explore whether the testlet model might be 

applicable for situations where multiple types of LID are simultaneously present, such as with a 

partially speeded test of reading comprehension.  In addition, future study should explore using 
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the testlet model to compensate for possible LID that exists among less clearly defined sets of 

items, such as sets of items that might be speeded.  Other examples of less clearly defined sets 

worth studying include items grouped by type, format, or objective.  In addition, it would be 

worthwhile to investigate whether the testlet approach could be extended to accommodate a 

progressive decline in performance as a result of test speededness, such as was simulated in this 

study.  These extensions and further explorations are left to future work. 
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Table 1 
 

Explanation of the number and size of testlets for the 3PLt 
 
   Number of Number of Total Number of 
  Model Teslets at Items Per Items Treated 
  Abbreviation End of Test Testlet as Speeded 
 
  3PLt*-1 1  1 16 16 6×
  3PLt*-  2 8 16 2 8×
  3PLt*-  4 4 16 4 4×
  3PLt*-1  1 8 8 8×
  3PLt*-  2 4 8 2 4×
  3PLt*-1  1 4 4 4×
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Table 2. Bias and RMSE for Ability Parameters 
 

 Bias RMSE 
 NS SP Total NS SP Total 
E(η) = 0.90       

M3PLM-4 0.03 -0.03 0.02 0.51 0.53 0.51 
M3PLM-8 0.03 -0.04 0.01 0.51 0.54 0.52 
M3PLM-16 0.03 -0.04 0.01 0.51 0.53 0.52 
3PLt-1 1  6× 0.03 -0.05 0.01 0.53 0.56 0.53 
3PLt-  2 8× 0.04 -0.03 0.02 0.52 0.55 0.53 
3PLt-  4 4× 0.04 -0.04 0.02 0.52 0.55 0.53 
3PLt-1 8  × 0.03 -0.04 0.02 0.52 0.55 0.53 
3PLt-  2 4× 0.03 -0.05 0.01 0.52 0.55 0.53 
3PLt-1 4  × 0.02 -0.06 0.00 0.52 0.55 0.53 
3PLM 0.01 -0.09 -0.01 0.51 0.56 0.52 

E(η) = 0.80       

M3PLM-4 0.03 -0.03 0.02 0.51 0.54 0.52 
M3PLM-8 0.03 -0.03 0.02 0.51 0.54 0.52 
M3PLM-16 0.04 -0.02 0.02 0.51 0.55 0.52 
3PLt-1 1  6× 0.04 -0.05 0.02 0.52 0.58 0.54 
3PLt-  2 8× 0.04 -0.08 0.01 0.51 0.58 0.53 
3PLt-  4 4× 0.06 -0.10 0.02 0.50 0.59 0.53 
3PLt-1 8  × 0.03 -0.11 -0.01 0.51 0.59 0.53 
3PLt-  2 4× 0.00 -0.16 -0.04 0.50 0.61 0.53 
3PLt-1  4× 0.01 -0.18 -0.04 0.50 0.63 0.54 
3PLM 0.02 -0.19 -0.03 0.50 0.65 0.54 

 
Note:  NS refers to simulated nonspeeded examinees, SP refers to simulated speeded 
examinees.



Table 3. Bias and RMSE for Item Difficulty Parameters 
 

 Bias RMSE 
 NS SP Total NS SP Total 
E(η) = 0.90       

M3PLM-4 0.04 0.04 0.04 0.08 0.09 0.08 
M3PLM-8 0.04 0.04 0.04 0.08 0.09 0.08 
M3PLM-16 0.04 0.02 0.04 0.08 0.09 0.09 
3PLt-1 1  6× 0.03 0.14 0.04 0.06 0.15 0.08 
3PLt-  2 8× 0.05 0.07 0.05 0.07 0.10 0.08 
3PLt-  4 4× 0.05 0.02 0.05 0.07 0.07 0.07 
3PLt-1 8  × 0.05 0.06 0.05 0.07 0.10 0.08 
3PLt-  2 4× 0.05 0.01 0.04 0.06 0.06 0.06 
3PLt-1 4  × 0.04 0.05 0.04 0.06 0.10 0.06 
3PLM 0.02 0.32 0.05 0.07 0.34 0.12 

E(η) = 0.80       

M3PLM-4 0.06 0.01 0.05 0.11 0.09 0.11 
M3PLM-8 0.05 0.01 0.05 0.09 0.08 0.09 
M3PLM-16 0.05 0.01 0.05 0.09 0.07 0.09 
3PLt-1 1  6× 0.05 0.08 0.06 0.08 0.10 0.09 
3PLt-  2 8× 0.05 0.04 0.05 0.07 0.08 0.07 
3PLt-  4 4× 0.06 0.06 0.06 0.08 0.09 0.08 
3PLt-1 8  × 0.04 0.06 0.04 0.06 0.13 0.08 
3PLt-  2 4× 0.01 0.07 0.02 0.05 0.13 0.07 
3PLt-1  4× 0.01 0.16 0.04 0.05 0.20 0.10 
3PLM -0.01 0.35 0.06 0.08 0.36 0.17 

 
Note:  NS refers to nonspeeded items, SP refers to speeded items.  In the E(η) = 0.90 
condition, the last 6 items (items 55-60) were considered SP and in the E(η) = 0.80 
condition, the last 12 items (items 49-60) were considered SP, regardless of the number of 
items actually analyzed as end-of-test items under the different models 
 
 



Table 4. Bias and RMSE for Item Discrimination Parameters 
 

 Bias RMSE 
 NS SP Total NS SP Total 
E(η) = 0.90       

M3PLM-4 0.03 0.12 0.04 0.10 0.19 0.11 
M3PLM-8 0.03 0.12 0.04 0.10 0.19 0.12 
M3PLM-16 0.03 0.11 0.04 0.11 0.20 0.12 
3PLt-1 1  6× 0.05 -0.08 0.04 0.09 0.12 0.09 
3PLt-  2 8× 0.05 -0.01 0.04 0.09 0.09 0.09 
3PLt-  4 4× 0.05 -0.03 0.04 0.09 0.10 0.09 
3PLt-1 8  × 0.05 -0.01 0.05 0.10 0.09 0.09 
3PLt-  2 4× 0.05 -0.04 0.04 0.09 0.11 0.09 
3PLt-1 4  × 0.05 -0.04 0.04 0.09 0.10 0.09 
3PLM 0.05 -0.04 0.04 0.11 0.12 0.11 

E(η) = 0.80       

M3PLM-4 0.04 0.06 0.05 0.12 0.13 0.12 
M3PLM-8 0.04 0.06 0.04 0.12 0.13 0.12 
M3PLM-16 0.04 0.06 0.04 0.12 0.13 0.12 
3PLt-1 1  6× 0.06 0.04 0.05 0.12 0.14 0.12 
3PLt-  2 8× 0.05 -0.01 0.04 0.09 0.11 0.09 
3PLt-  4 4× 0.04 0.08 0.05 0.09 0.14 0.10 
3PLt-1 8  × 0.05 -0.01 0.04 0.09 0.10 0.09 
3PLt-  2 4× 0.04 0.08 0.05 0.09 0.14 0.10 
3PLt-1  4× 0.04 0.07 0.05 0.09 0.15 0.10 
3PLM 0.02 0.27 0.07 0.11 0.37 0.19 

 
Note:  NS refers to nonspeeded items, SP refers to speeded items.  In the E(η) = 0.90 
condition, the last 6 items (items 55-60) were considered SP and in the E(η) = 0.80 
condition, the last 12 items (items 49-60) were considered SP, regardless of the number of 
items actually analyzed as end-of-test items under the different models 
 
 



Table 5. Average Correlations Between Estimated and Generating Ability Parameters 
 

Average Correlations 
 NS SP Total 
E(η) = 0.90    

M3PLM-4 0.94 0.93 0.93 
M3PLM-8 0.93 0.91 0.92 
M3PLM-16 0.93 0.92 0.93 
3PLt-1 1  6× 0.94 0.93 0.93 
3PLt-  2 8× 0.94 0.93 0.93 
3PLt-  4 4× 0.94 0.93 0.93 
3PLt-1 8  × 0.94 0.93 0.93 
3PLt-  2 4× 0.94 0.93 0.93 
3PLt-1 4  × 0.94 0.93 0.93 
3PLM 0.94 0.93 0.93 

E(η) = 0.80    

M3PLM-4 0.93 0.91 0.92 
M3PLM-8 0.93 0.91 0.92 
M3PLM-16 0.93 0.91 0.93 
3PLt-1 1  6× 0.93 0.91 0.92 
3PLt-  2 8× 0.93 0.91 0.92 
3PLt-  4 4× 0.94 0.91 0.92 
3PLt-1 8  × 0.93 0.91 0.92 
3PLt-  2 4× 0.94 0.91 0.92 
3PLt-1  4× 0.94 0.91 0.92 
3PLM 0.94 0.90 0.91 

 
Note:  NS refers to simulated nonspeeded examinees, SP refers to simulated speeded examinees.



Table 6. Average Q3 Statistics for All Items and End-of-Test Items 
 

 Average Q3 
 Average Last 16 Last 12 Last 8 Last 4 
E(η) = 0.90      

M3PLM-4 0.01 0.00 0.00 0.00 0.00 
M3PLM-8 0.01 0.00 0.00 0.00 0.00 
M3PLM-16 0.01 0.01 0.01 0.01 0.01 
3PLt-1 1  6× 0.01 0.00 0.00 0.03 0.09 
3PLt-  2 8× 0.01 0.00 0.00 -0.02 0.03 
3PLt-  4 4× 0.01 0.00 0.00 0.01 -0.04 
3PLt-1 8  × 0.01 0.00 0.00 -0.02 0.03 
3PLt-  2 4× 0.01 0.01 0.00 0.01 -0.04 
3PLt-1 4  × 0.01 0.01 0.01 0.02 -0.04 
3PLM 0.01 0.02 0.03 0.06 0.09 

E(η) = 0.80      

M3PLM-4 0.01 0.00 0.00 0.00 0.00 
M3PLM-8 0.01 0.00 0.00 0.00 0.00 
M3PLM-16 0.01 0.00 0.00 0.00 0.00 
3PLt-1 1  6× 0.00 0.00 0.01 0.03 0.04 
3PLt-  2 8× 0.00 0.01 0.02 -0.02 -0.01 
3PLt-  4 4× 0.00 0.02 0.04 0.05 -0.04 
3PLt-1 8  × 0.00 0.02 0.03 -0.02 -0.01 
3PLt-  2 4× 0.00 0.03 0.05 0.05 -0.03 
3PLt-1  4× 0.00 0.03 0.06 0.08 -0.03 
3PLM 0.00 0.07 0.09 0.10 0.10 
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Table 7.  Estimated Testlet Variances 
 

 
1

2ˆγσ  
2

2ˆγσ  
3

2ˆγσ  
4

2ˆγσ  

E(η) = 0.90     
3PLt-1 1  6× 0.17    
3PLt-  2 8× 0.09 0.65   
3PLt-  4 4× 0.12 0.14 0.24 1.37 
3PLt-1 8  × 0.65    
3PLt-  2 4× 0.29 1.30   
3PLt-1  4× 1.26    

E(η) = 0.80     

3PLt-1 1  6× 0.74    
3PLt-  2 8× 0.24 1.24   
3PLt-  4 4× 0.19 0.49 1.07 1.15 
3PLt-1 8  × 1.20    
3PLt-  2 4× 1.03 1.10   
3PLt-1  4× 1.00    
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Table 8.  Differences Between Estimated Testlet Variances  
for Nonspeeded and Speeded Examinees 

 
 1, 1,

2 2ˆ ˆγ γσ σ−
NS SP 2, 2,

2 2ˆ ˆγ γσ σ−
NS SP 3, 3,

2 2ˆ ˆγ γσ σ−
NS SP 4, 4,

2 2ˆ ˆγ γσ σ−
NS SP

 

E(η) = 0.90     
3PLt-1 1  6× -0.14    
3PLt-  2 8× 0.01 -0.53   
3PLt-  4 4× 0.01 0.01 -0.08 -0.77 
3PLt-1 8  × -0.53    
3PLt-  2 4× -0.09 -0.77   
3PLt-1 4  × -0.76    

E(η) = 0.80     

3PLt-1 1  6× -0.86    
3PLt-  2 8× -0.13 -1.13   
3PLt-  4 4× -0.01 -0.22 -0.66 -0.75 
3PLt-1 8  × -1.10    
3PLt-  2 4× -0.63 -0.72   
3PLt-1  4× -0.67    

 


